Approximating Material Interfaces during Data Simplification
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Abstract

We present a new method for simplifying large data sets
that contain material interfaces. Material interfaces embed-
ded in the meshes of computational data sets are often a
source of error for simplification algorithms because they
represent discontinuities in the scalar or vector field over a
cell. By representing material interfaces explicitly in a data
simplification process, we are able to provide separate field
representations for each material over a single cell. Our al-
gorithm uses a multiresolution tetrahedral mesh supporting
fast coarsening and refinement capabilities; error bounds for
feature preservation; explicit representation of discontinu-
ities within cells; and separate field representations for each
material within a cell.

1 Introduction

Computational physics simulations are generating larger and
larger amounts of data. They operate on a wide vari-
ety of input meshes, including rectilinear meshes, adap-
tively refined meshes for Eulerian hydrodynamics, unstruc-
tured meshes for Lagrangian hydrodynamics and arbitrary
Lagrange-Eulerian meshes. Very often, these data sets con-
tain special physical features such as material interfaces,
physical boundaries, or thin slices of material that must be
preserved when the field is simplified. In order to ensure
that these features are preserved, the simplified version of
the data set needs to be constructed using strict L* error
bounds that prevent small yet important features from being
eliminated.

Data sets of this type require a simplification algorithm
that is capable of approximating data sets with respect to
several simplification criteria. The cells in the approximation
must satisfy error bounds with respect to the dependent field
variables over each mesh cell, and to the representation of
the discontinuities within each cell. In addition, the simpli-
fication algorithm must be able to deal with the wide range
of possible input meshes as described above.
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We present an algorithm for generating an approximation
of a computational data set that can be used in place of the
original high-resolution data set generated by the simulation.
Our approximation is a resampling of the original data set
that preserves user-specified as well as characteristic features
in the data set and approximates the dependent field values
to within a specified tolerance.

The basis for our simplification algorithm is the subdivi-
sion of a tetrahedral mesh as presented by Zhou et al. [1].
We generalize their implementation by removing the restric-
tion that the input data needs to be given on a regular rec-
tilinear mesh consisting of (2% + 1)x(2" 4+ 1)x(2" +1) cells.
Given a data set and polygonal representations for the ma-
terial interfaces, our algorithm constructs an approximation
as follows:

1. Our algorithm starts with the base mesh of 6 tetrahedra
and associates with each one the interface polygons that
intersect it.

2. The initial tetrahedral mesh is first subdivided so that
the polygonal surface meshes describing the material
interfaces are approximated within a certain tolerance.
At each subdivision, the material interface polygons ly-
ing partially or entirely in a cell are associated with the
cell’s children; approximations for the polygons in each
child cell are constructed, and interface approximation
errors are computed for the two new child cells.

3. The mesh is further refined to approximate the field
of interest, e.g., density or pressure within a specified
tolerance.

For the cells containing material interfaces, our algorithm
computes a field representation for each material. This is
done by extrapolating ghost field values for each material at
each vertex. When the field approximation error for the cell
is computed, the separate field representations, built using
these ghost field values, are used to calculate an error for
each distinct material in the cell. The decomposition process
of a cell that contains multiple materials consists of these
steps:

1. The signed distance values and ghost values for the new
vertex are computed when the vertex is created during



a split or subdivision operation. This is done by exam-
ining those cells that share the edge being split.

2. The interface representations, i.e., triangle meshes, are
associated with the child cells, and the approximating
interfaces representations and their associated errors
are computed.

3. The field error for each of the materials is computed,
and the maximum value of these errors is the overall
error associated with a cell containing multiple materi-
als.

2 Related Work

Hierarchical approximation techniques for triangle meshes,
scattered data, and tetrahedral meshes have matured sub-
stantially over recent years. In [2], Hoppe describes the pro-
gressive mesh simplification method for triangle meshes. An
arbitrary mesh is simplified through a series of edge collapse
operations to yield a very simply base mesh. The ROAM
system, described in [3], uses priority queue-driven split and
merge operations to provide optimal real-time display of tri-
angle meshes for terrain rendering applications. The tetra-
hedral mesh structure used in our framework is an extension
of the original ROAM data structure for triangle meshes.
Heckel and Uva [4], [5] describe methods for constructing
surface hierarchies based on adaptive clustering. Multires-
olution methods for reconstruction and simplification have
also been explored using subdivision techniques and, espe-
cially, wavelets.

Simplification of tetrahedral meshes has been explored in
[1], [6], [7], [8], and [9]- Zhou et al. [1] present the multireso-
lution tetrahedral framework that is the basis of our simpli-
fication algorithm. (This is further discussed in Section 2).
Cignoni at al. [6] describe a multiresolution tetrahedral mesh
simplification technique built on scattered vertices obtained
from the initial dataset. Their algorithm supports interac-
tive level-of-detail selection for rendering purposes. Trotts
et al. in [7] simplify tetrahedral meshes through edge col-
lapse operations. They start with an initial high-resolution
mesh that defines a linear spline function and simplify until
a specified tolerance. Staadt and Gross [9] describe Pro-
gressive Tetrahedralizations as an extension of Hoppe’s [2].
They simplify a tetrahedral mesh through a sequence of edge
collapse operations. They also describe error measurements
and cost functions for preserving consistency with respect to
volume and gradient calculations and techniques for ensuring
that the simplification process does not introduce artifacts
such as intersecting tetrahedra.

Different error metrics for measuring the accuracy of sim-
plified tetrahedral meshes have been proposed. Lein et al.
[10] present a simplification algorithm for triangle meshes us-
ing the Hausdorff distance as an error measurement. They
develop a symmetric adaption of the Hausdorff distance that
is an intuitive measure for surface accuracy. In [11], Heck-
bert and Garland use a quadric error metric for surface sim-
plification. They use vertex pair collapse operations to sim-
plify triangle meshes and they use quadric matrices that de-
fine a quadric object at each vertex to control the error of
the simplified surfaces.

3 Multiresolution Framework

A multiresolution framework for simplifying numerically
simulated data needs to be a fairly robust and extensible

system. It must be capable of supporting the wide range
of possible input structures used in the simulations and the
wide range of output data generate by these simulations.
The following properties and operations are desirable for
such a framework:

1. Interactive transition between levels of detail.
The ability to quickly move between different levels of
detail allows the user to select a desired approximation
at which to perform a calculation (for a visualization
application). Since the level of detail is directly related
to the approximation error, the user can balance com-
putation time and accuracy.

2. Strict L*° error bounds. Strict error bounds prevent
small yet important features from being averaged or
smoothed out by the simplification process.

3. Local and adaptive mesh refinement and local
error computations. Local mesh refinement and
computations allow the representation to be refined
only in the areas of interest while keeping areas of little
interest at relatively lower resolutions. This is essential
for maintaining interactivity and strict cell count on
computers with limited resources. Local error compu-
tations are needed for efficiency. Considering data sets
consisting of millions or billions of cells, the error cal-
culations should not involve a large amount of original
data.

4. Accommodating different meshes. Computational
simulations are done on a large variety of mesh struc-
tures, and it is cumbersome to write a multiresolution
algorithm for each specific structure. In order for a
framework to be useful it should be easily adaptable to
a broad class of input meshes.

5. Explicit representation of field and/or material
discontinuities. Discontinuities are very important in
scientific data sets and very often need to be preserved
within a certain tolerance during data simplification. A
multiresolution framework should support the explicit
representation and approximation of these discontinu-
ities for the different resolution levels.

Our multiresolution recursive tetrahedral framework sat-
isfies these design criteria. Tetrahedral cells are the simplest
of the polyhedral cells. This allows us to use linear basis
functions to approximate the material interfaces and the de-
pendent field variables in a cell. Since our data structure is
defined recursively as a binary tree, a representation of the
original data can be computed in a preprocessing step, and
we can utilize methods developed for the ROAM system [3]
to efficiently select a representation that satisfies an error
bound or a desired cell count. This makes the framework
ideal for interactive display. Strict L*® error bounds are in-
corporated into the subdivision process, see [3]. The frame-
work supports various input meshes by resampling them at
the vertices of the multiresolution tetrahedral grid. Discon-
tinuities are supported at the cell level allowing local refine-
ment of the representations of surfaces of discontinuity in
geometrically complex areas.

The framework has several advantages over other mul-
tiresolution spatial data structures such as an octree. The
way we use the binary subdivision method ensures that the
tetrahedral mesh will always be a conformant, i.e, all edges
in the mesh end at the endpoints of other edges and not



in the interior of edges. This ensures that cracks and T-
intersections will not occur anywhere in the mesh. A confor-
mant mesh makes it easy to guarantee that representations
of fields and surfaces of discontinuity are continuous across
cell boundaries.

Our resampling algorithms and error bounding algorithms
require that an original data set allow the extraction of the
following information:

1. The values of the field variables at any point.

2. The maximum difference between our representation
for a given field over one of our cells and the repre-
sentation of the same field over the same volume in the
original dataset

4 Material Interfaces

4.1 Motivation

A material interface defines the boundary between two dis-
tinct materials. Field representations across a material in-
terface are often discontinuous. Thus, an interface can in-
troduce a large amount of error to cells that cross it. Instead
of refining an approximation substantially in the neighbor-
hood of an interface, the discontinuity in the field is better
represented by explicitly representing the surface of disconti-
nuity in each cell. Once the discontinuity is represented, two
separate functions are used to describe the dependent field
variables on either side of the discontinuity. By representing
the surface of discontinuity exactly, our simplification algo-
rithm does not need to refine regions in the spatial domain
with a large number of tetrahedra.

4.2 Extraction and Approximation

In the class of input datasets with which we are working,
material interfaces are represented as triangle meshes. In
the case that these triangle meshes are not known, they
are extracted from volume fraction data by a material in-
terface reconstruction technique described in [12] and [13]
(The volume fractions resulting from numerical simulations
indicate what percentages of which materials are present in
each cell.). Such an interface reconstruction technique pro-
duces a set of crack-free triangle meshes and normal vector
information that can be used to determine on which side and
in which material a point in space lies.

Within one of our tetrahedra, an approximate material
interface is represented as the zero set of a signed distance
function. Each vertex of a tetrahedron is assigned a signed
distance value for each of the material interfaces in the tetra-
hedron. The signed distance from a vertex V to an interface
mesh I is determined by first finding a triangle mesh ver-
tex V; in the triangle mesh describing I that has minimal
distance to V. The sign of the distance is determined by con-
sidering the normal vector N; at V;. If N; points towards
V, then V is considered to be on the “positive side” of the
interface, otherwise it is considered to be on the “negative
side” of the interface.

Figure 1 shows a two-dimensional example of a triangle
with several material interfaces and their approximations.
In this figure, the red, green, and blue jagged lines are the
original boundaries and the straight black lines are the ap-
proximations derived from using the signed distance values.
The red dashed lines and dots show the points on the inter-
face between materials A and B used to compute the signed

Figure 1: Triangle with three materials (A, B, and C) and
three interfaces.

distance values for the vertices Vo, V1, and V. The black
dashed line demonstrates that the projection of a point onto
an approximation does not always lie inside the cell. The
signed distance function is assumed to vary linearly in the
cell, i.e., a tetrahedron. The distance function is a linear
function f(z,y,2) = Az + By + Cz + D. The coefficients
for the linear function defining a boundary representation
are found by solving a 4x4 system of equations, considering
the requirement that the signed distance function over the
tetrahedron must interpolate the signed distance values at
the four vertices. Figure 2 shows a tetrahedron, a material
interface approximation, and the signed distance values d;
for each vertex V,;. The approximation is shown in cadet
blue. The normal vector shown in green indicates the posi-
tive side of the material boundary approximation. Thus, the
distance to V3 is positive and the distances for Vo, Vi, and
V., are negative.

We note that a vertex has at most one signed distance
value for each interface. This ensures that the interface rep-
resentation is continuous across cell boundaries. If a cell
does not contain a particular interface, the signed distance
value for that interface is meaningless for that cell. Given a
point P in an interface polygon and its associated approxi-
mation B, the error associated with P is the absolute value
of the distance between P and B,. The material interface
approximation error associated with a cell is the maximum
of these distances, considering all the interfaces within the
cell.

5 Discontinuous Field Representations

5.1 Motivation

Cells that contain material interfaces typically have discon-
tinuities in the fields defined over them. For example, the
density field over a cell that contains both steel and nickel
is discontinuous exactly where the two materials meet. In
these situations, it is better to represent the density field
over the cell as two separate fields, one field for the region
containing only the first material and one for the second
material.

One way to accomplish this is to divide the cell into two
distinct cells at the material interface. In Figure 3, the trian-
gle would be divided into a quadrilateral for material A and
a triangle for material B. The disadvantages of this method
are that it introduces new cell types into the mesh and that
it makes it harder to have continuous field representations
across cells. Our algorithm represents the discontinuity by
constructing a field representation for each material in the



Figure 2: Tetrahedron showing signed distance values and
the corresponding boundary approximation.

cell. Each of the vertices in a cell must have distinct field val-
ues for each material in the cell. These extrapolated values
are called ghost values.

For a vertex V that does not reside in material M, we
compute a ghost value for the field associated with material
M at vertex V. This ghost value is an extrapolation of the
field value for M at V. The process is illustrated in Figure
3. The known field values are indicated by the solid circles.
The red circles are the known field values for material A,
and the blue circle is the known field value for material B.
The empty circles surrounding the filled circles indicate that
a ghost value is needed for that material at the indicated
vertex. Vertices Vo and V; are in material A, and thus ghost
values for material B must be calculated at their positions.
This is indicated by the empty blue circles. Vertex V3 lies
in material B, and thus a ghost value for material A must
be calculated at its position. This is indicated by the empty
red circle.

As described in Section 1, the ghost value computation is
performed when the vertex is created during the tetrahedral
refinement process.

5.2 Computation of Ghost Values

The ghost values for a vertex V are computed as follows:

1. For each material interface present in the cells that
share the vertex, find a vertex V,,;, in a triangle mesh
representing an interface with minimal distance to V.
In Figure 3, these vertices are indicated by the dashed
lines from Vg, V1, and V3 to the indicated points on
the interface.

2. Evaluate the data set on the far side of the interface
at Vouin and use this as the ghost value at 'V for the
material on the opposite side of the interface.

Only one ghost value exists per material and vertex. This en-
sures that the field representations are C°-continuous across
cell boundaries. For example consider vertex Vo of the tri-
angle in Figure 1. The vertex Vo lies in material A, and
therefore we must compute ghost values for materials B and
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Figure 3: Triangle containing two materials.

C at vertex V. The algorithm will examine the three mate-
rial boundaries and determine the points from materials B
and C that are closest to Vo. The fields for materials B and
C are evaluated at these points, and these values are used
as the ghost values for Vo.

6 Error Metrics

The error metrics employed in our framework are similar to
the nested error bounds used in the ROAM system. Each
cell has two associated kinds of error values, field errors and
material interface errors. In order to calculate the field errors
for a leaf cell in our tetrahedral mesh hierarchy, we assume
that the original data set can be divided into native data
elements. Each of these is presumed to have a well-defined
spatial extent and a well-defined representation for each field
of interest over its spatial domain. The simplest example of
a native data element is just a grid point that holds field
values. Other possibilities are blocks of grid points treated
as a unit, cells with a nonzero volume and a field representa-
tion defined over the entire cell, or blocks of such cells. Each
leaf cell in our multiresolution mesh maintains links to the
native data elements with which it intersects. We assume
that it is possible to bound the difference between our rep-
resentation of a given field over one of our leaf cells and the
representation of the same field over each of the native data
elements with which the given cell intersects. The error for
the given field in the given cell is then just the maximum
of the errors associated with each of the intersecting native
data elements. Currently, we are dealing only with native
data elements that are grid points of zero volume.

The field error er for a non-leaf cell is computed from the
errors associated with its two children according to:

er = max{er,, er, } + [2(vc) — 27 (vc)| (1)

where e, and e, are the errors of the children; v, is the
vertex that splits the parent into its children; z(v.) is the
field value assigned to vc; and zr(vc) is the field value that
the parent assigns to the spatial location of v., equivalently,
zr(ve) = 2(2(vo) + 2(v1)), where vo and v; are the vertices
of the parent’s split edge. This error is still a genuine bound
on the difference between our representation and the repre-
sentation of the original data set. However, it is looser than
the bound computed directly from the data. The error com-
puted from the children has the advantage that the error
associated with a cell bounds not only the deviation from
the original representation but also the deviation from the



representation at any intermediate resolution level. Conse-
quently, this error is nested or monotonic in the sense that
the error of a child is guaranteed not to be greater than the
error of the parent. Once the errors of the leaf cells are
computed, the nested bound for all cells higher in the tree
can be computed in time proportional to K, where K is the
number of leaf cells in the tree. This can be accomplished
by traversing the tree in a bottom up fashion.

The material interface error associated with a leaf node
is the maximum value of the errors associated with each of
the material interfaces in the node. For each material inter-
face, the error is the maximum value of the errors associated
with the vertices constituting the triangle mesh defining the
interface and being inside the cell. The error of a vertex is
the absolute value of the distance between the vertex and
the interface approximation. The material interface error of
E for a cell guarantees that no point in the original interface
polygon mesh is further from its associated approximation
that a distance of E. This error metric is an upper bound
on the deviation of the original interfaces from our approx-
imated interfaces. A cell that does not contain a material
interface is considered to have an interface error of zero.

7 Results

‘We have tested our algorithm on a data set resulting from a
simulation of a hypersonic impact between a projectile and a
metal block. The simulation uses a logically rectilinear mesh
of dimensions 32x32x52. For each cell, the average density
and pressure values are available, as well as the per-material
densities and volume fractions. The physical dimensions in
x, y, and z directions are [0,12] [0,12] and [-16,4.8].

There are three materials in the simulation: the projec-
tile, the block, and empty space. The interface between the
projectile and the block consists of 38 polygons, the inter-
face between the projectile and empty space consists of 118
polygons and the interface between empty space and the
block consists of 17574 polygons. Figure 4 shows the orig-
inal interface meshes determined from the volume fraction
information. The green mesh is the interface between the
metal block and empty space; the blue mesh is the interface
between the projectile and empty space; and the red mesh
is the interface between the projectile and the block. The
meshes shown in Figure 4 were generate from a 17x17x28
data set.

Figures 5 shows a cross section view of the mesh created
by a cutting plane through the tetrahedral mesh. The black
lines are the original interface polygons intersected by the
plane, and the magenta lines are our approximation to the
interface. The interface approximation error is 0.15. An
error of 0.15 means that all of the vertices in the original
material interface meshes are no more that a physical dis-
tance of 0.15 from their associated interface approximation.
This is equivalent to an error of (0.5 - 1.5)% when considered
against the physical dimensions. A total of 3174 tetrahedra
were required to approximate the interface to an error 0.15.
The overall mesh contained a total of 5390 tetrahedra. A
total of 11990 tetrahedra were required to approximate the
interface to an error of 0.15 and the density field to an error
of 3. The maximum field approximation error in the cells
containing material interfaces is 2.84 and the average field
error for these cells is 0.007. These error measurements indi-
cate that separate field representations for the materials on
either side of a discontinuity can accurately reconstruct the
field.
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Figure 4: Original triangular meshes representing material
interfaces.

Figures 6 and 7 compare the density fields generated us-
ing linear interpolation of the cell average density values and
explicit field representations on either side of the discontinu-
ity. Figure 7 shows that using explicit field representations in
the presence of discontinuities can improve the quality of the
field approximation. This can be seen in the flat horizontal
and vertical sections of the block where the cells approxi-
mate a region that contains the block and empty space. In
these cells, the use of explicit representations of the discon-
tinuities leads to a exact representation of the density field.
The corresponding field representations using linear interpo-
lation, shown in Figure 6, do a very poor job of capturing
the discontinuities. Furthermore, Figure 7 captures more
of the dynamics in the area where the projectile is entering
the block (upper left corner). The linear interpolation of the
density values in the region where the projectile is impacting
the block smooths out the density field, and does not capture
the distinct interface between the block and the projectile.
Figure 8 shows the density field from Figure 7 with our ap-
proximation to the interface and without the cell outlines.

8 Conclusions and Future Work

‘We have presented a simplification method for scientific data
sets that explicitly represents material interfaces in mesh
cells. Our algorithm constructs an approximation that can
be used in place of the original data set for visualization
purposes. Explicitly representing the material and implicit
field discontinuities allows us to use multiple field represen-
tations to better approximate the field within each cell. The
use of the tetrahedral subdivision allows us to generalize our
algorithm to a wide variety of data sets and to support inter-
active level-of-detail exploration and view-dependent simpli-
fication. Future work will extend our error calculations to
support complex native data element types such as tetrahe-
dra and curvilinear hexahedra. Our current ghost value com-



7

Figure 5: Cross section of the tetrahedral mesh showing the
original interfaces and interface approximations.

Figure 6: Density field using linearly interpolated cell aver-
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age density values field (interface error = 0.15).

Figure 7: Density field using explicit interface representa-

tions and separate field representations (interface error

0.15).

Figure 8: Figure 7 without the cell outlines.



putation assumes that the field is constant on the other side
of the interface. Higher-order extrapolation methods should
be investigated for ghost value computation to determine if
a superior field approximation can be obtained. Similarly,
material interfaces are defined by approximations based on
linear functions. The tradeoff between cell count and higher-
order approximation methods should be investigated to de-
termine if a better approximation can be obtained without
a great increase in computational complexity. Finally, we
plan to apply our algorithm to more complex unstructured
data sets.
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